"Improving Reliability and Performance of Offshore Structures through better Lifecycle Engineering Data" by Ir. Abdul Malik Hussein bin Abdul Jalil Sr Mechanical Engineering Consultant Caidmark Sdn Bhd

Tuesday, 6th October 2015 Impiana Hotel KLCC

Definition of Reliability

Reliability may be defined in the following ways:

- •The idea that an item is fit for a purpose with respect to time
- •The capacity of a designed, produced, or maintained item to perform as required over time
- •The capacity of a population of designed, produced or maintained items to perform as required over specified time
- •The resistance to failure of an item over time
- •The probability of an item to perform a required function under stated conditions for a specified period of time
- •The durability of an object.

https://en.wikipedia.org/wiki/Reliability_engineering

Definition of Reliability

TIME!!!

Why the concern in time?

Definition of Reliability

OIL

MORE OIL REDUCED COST FASTER **TIME**

What is Lifecycle Engineering Data?

6

- -Populating lifecycle engineering data from design software
- Using lifecycle engineering data to help engineers optimize performance of offshore structures
- Using lifecycle engineering data to better detect and avoid structural failures
- Using lifecycle engineering data in simulation tools to predict life of offshore structures

- Technology and expertise that is available in Caidmark to manage lifecycle engineering data

Populating Lifecycle Engineering Data fromTypical Asset InformationDesign Software

- Equipment Data Sheets
- Asset Hierarchy, Register
- Tag numbers
- Maintenance Strategies
- Criticality Rankings
- Reliability Centered Maintenance FMEAs
- Maintenance Activities Lists
- Maintenance Job Routines
- Corrosion Inspection Job Routines
- Consolidated Bill of Materials
- Spare Parts & MRO Lists
- Operations Procedures
- Commissioning, Startup Strategy, Plan, Procedures
- Training Manuals
- Maintenance Manuals
- As-Built Drawings
- Equipment Baselines

Span of Lifecycle Engineering Data

Relevant Lifecycle Engineering Data

Populating Lifecycle Engineering Data from Design Software

- Selection of Materials
- Standard Material Codes
- Standard Material Properties
- Managing Design of Structure or Asset
- Simulating Reality

Using Lifecycle Engineering Data to help Engineers Optimize Performance of Offshore Structures

Performance of Structures

Maximize Usage

Maximize Life

Lifecycle Engineering Data to Monitor

Using Lifecycle Engineering Data to help Engineers

Optimize Performance of Offshore Structures

STRENGTH FATIGUE LIFE

What Data from Design Point of View? RELIABILITY FAILURE

DURABILITY

Using Lifecycle Engineering Data to better Detect and Avoid Structural Failures

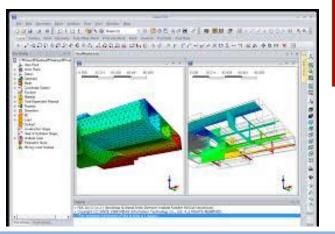
Probable Cause of Structural Failures

Fatigue Over Utilized

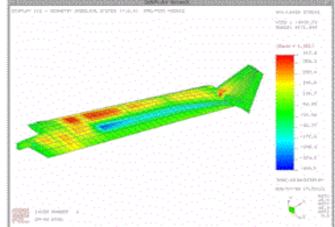
Wrong Design

Wrong Material Selection

Impact

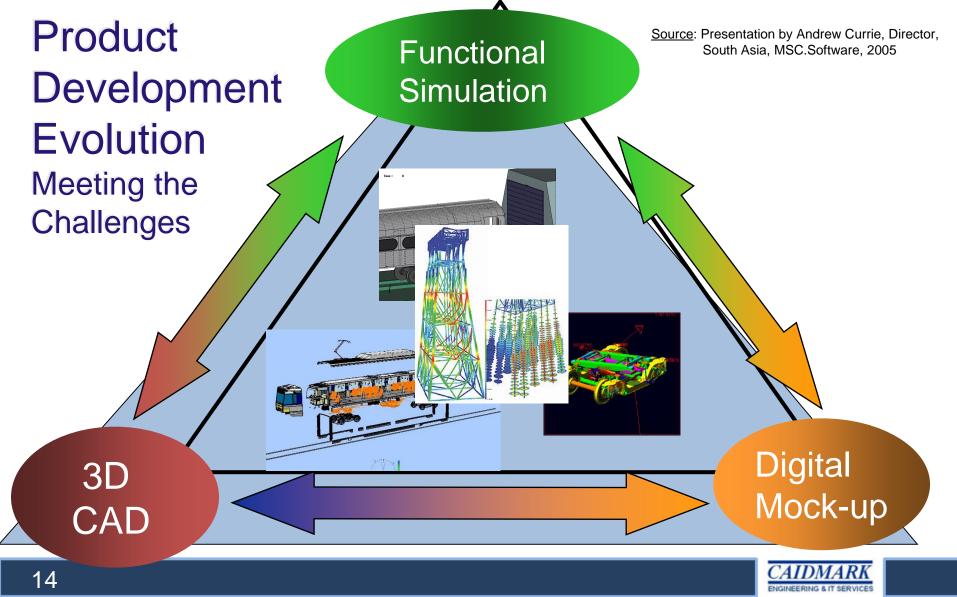

Poor Workmanship

Wrong Operating Procedures


Using Lifecycle Engineering Data to better Detect and Avoid Structural Failures

Can 80% of Structural Failures be detected and avoided with better information of design Lifecycle Engineering Data?

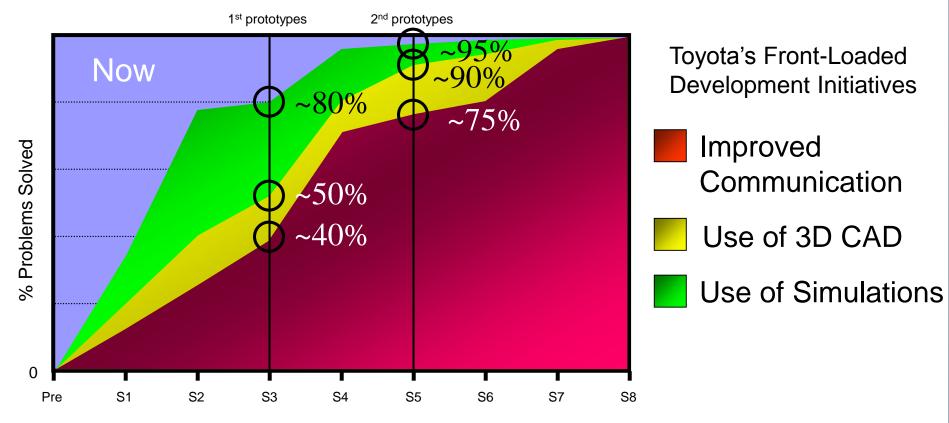
12


Product Development Evolution (Past)

Physical Test and Redesign Source: Presentation by Andrew Currie, Director, South Asia, MSC.Software, 2005

Physical

Prototype



What are the Benefits of Simulations?

- Simulation is the effective use of <u>virtual product</u> <u>models</u> to make <u>critical product decisions</u> throughout the new and operating product development process
- Simulation enables improved product quality, faster time to market and reduced cost through the efficient use of people, processes, tools, and data

Innovation Through Simulations

Source: Toyota Motor Company Presentation Traverse City, MI Automotive Conference

Stages of Development Process

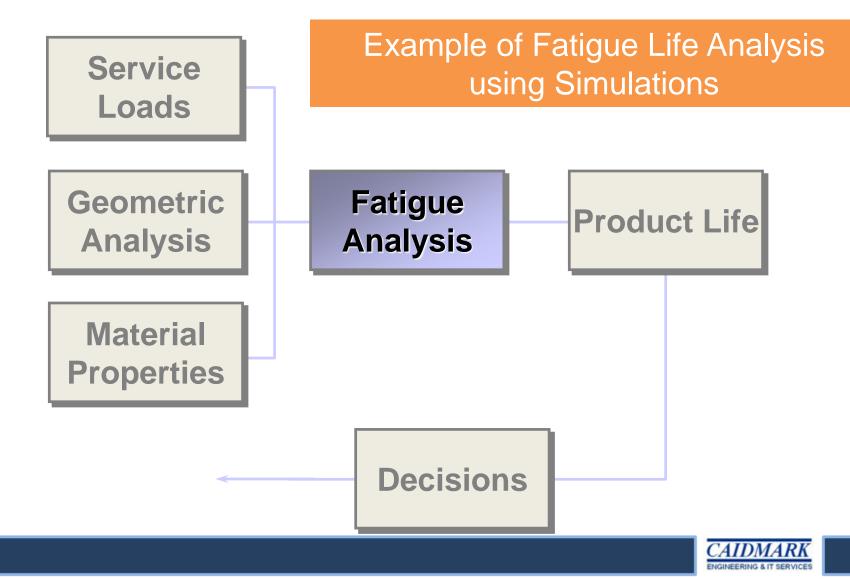
What Is the Return on Investment?

- Returns:
 - Fewer trials and errors.
 - Less material waste.
 - Confidence in manufacturing process.
 - "Get it right the first time."
 - Improved quality.
 - Reduced time to market and operation.
 - Lower overall manufacturing cost.

How do we apply Simulations to real world problems?

> Multiple Disciplines: Streamlined & Integrated

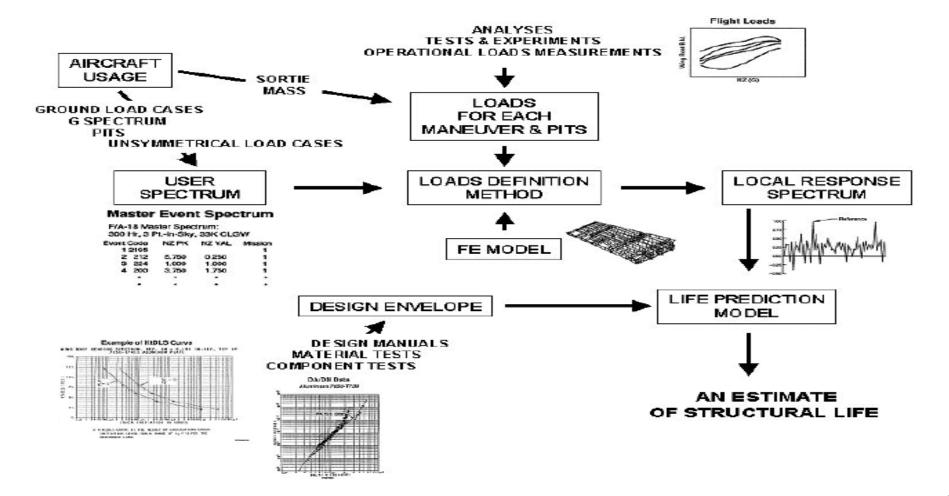
> > Will it work?


Will it break? Will it last?

Will it operate safely?

Will it meet comfort requirements?

Can we make it?


WHAT IS FATIGUE?

- Failure under a repeated or otherwise varying load which never reaches a level sufficient to cause failure in a single application.
- The initiation and growth of a crack, or growth from a pre-existing defect, until it reaches a critical size.

Fatigue cracks initiate and grow as a result of cyclic plastic deformation

Using Lifecycle Engineering Data in Simulation Tools to Predict Life of Offshore Structures (From an Aircraft Structure Point of View)

Experience working with the Royal Malaysian Air Force

TIME TO WALK THE TALK

CAIDMARK SDN BHD ENGINEERING & IT SERVICES

Incorporated : 30 APRIL 1986

MS ISO 9001 : 2008 REG. NO. AR 3213 SME Corp SCORE: (4) ★ ★ ★

1-InnoCERT - AA SME Innovation Award 2014 (Winner for ICT & Software Development Category)

Updated on 19 January 2015

CONDITION BASED MONITORING

Technology and Expertise that is available in Caidmark to Manage Lifecycle Engineering Data

CAIDMARK TECHNICAL & INDUSTRIAL NICHE AREAS CAIDMARK SOLUTIONS & PRODUCTS

DATA ACQUISITION	CAD/CAE/CFD	PHYSICS OF FAILURE	3D E-LEARNING	MARINE
CONTROL & MONITORING SYSTEM	VIBRATION MONITORING	RELIABILITY MONITORING & ANALYSIS	OBSOLESCENSE MANAGEMENT	AVIATION
MODELING & SIMULATION SYSTEM	ATE Hil TESTING	CBM RCM	LIFE ,VIRTUAL & CONSTRUCTIVE (LVC)	OIL & GAS

PRINCIPALS

THANK YOU

Ir. Abdul Malik Hussein malik@caidmark.com.my Mobile: +60192386966

